
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 2, February 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7229 165

Building Automated Detection and Correction

System for Syntax Program Error Using

Development One Hot Vector Method

Dr. Buthainah F. AL-Dulaimi
 1
, Hameed Taha Khaleel

 2

Lecturer in Informatics Institute for Postgraduate Studies, work in the University of Information and Communication

Technologies, Baghdad, Iraq
 1

Postgraduate in the Iraqi Commission for Computers and Informatics, Informatics Institute for Postgraduate Studies,

Baghdad, Iraq
 2

Abstract: The aim of these papers is to propose a system that helps novice programmers to overcome the syntax errors

by using automatic detection and correction technique. This technique is one of the important challenges facing

researchers. The proposed system uses Hopfield neural network technic as an associated memory and the one hot

vector as a method to represent the data. Where the number of iterations is adopted to reach of the stable state of the

network to detect the syntax error and then correct them. The method of representation helps to increase the efficiency

of the Hopfield technic and we will discuss this through two experiments. In the first experiment used the development

one hot vector method as the matrix to represent the data. While used development one hot vector method as the one

vector in the second experiment. The system is trained by using a case study containing a valid syntax statement. While

it is tested by generating a set of errors in the statement for the case study. The case study is consists of several

examples (Classes and Method) written in the Java programming language. These (Classes and Method) contains

statement about the process of the multiplication and the arithmetic summation of the matrix. In the evaluation and

testing process, random errors are created that related to a sequence of the tokens in the For-loop, If and While

statements. The case study contains (205) statements that include (90) statements of the (For-loop statements) divided

into (45) syntax error in the sequence of tokens and (45) correct statement.

Keywords: Correction syntax error, Detection syntax error, One Hot Vector Method, Java.

I. INTRODUCTION

The Programming is often cumbersome, especially if the person is a beginner and facing the syntax error. The

interpreter or compiler of the programming language platform will display the error codes and determine their location.

The beginner does not understand all the error messages. In our papers, we design a system capable of detecting and

automatically correcting the syntax error for specific words such as for-statement without the need to understand error

messages. This research focuses on syntax errors, to highlight the most common mistakes faced by the beginner [1].

The syntax error is pointing to the mistakes in order of token inside structure statement and punctuation. Frequently,

messages syntactical error is not necessary to lead beginners to correct the error. Generally, most research converts the

incorrect program to correct by using replacing, adding and/or deleting one or more symbols [2]. In our papers, we will

compare the results of two experiments. Both experiments depend on Hopfield network technology and use the number

of iteration for network stability as a measure of detection and automatic correction of errors. Network stability

depends on the type of the encoding method. In these two experiments, one experiment uses one hot method and the

other is used develop one hot vector method.

II. HOPFIELD NEURAL NETWORK (HNN)

 The algorithm (1) describes the steps of network training, while algorithm (2) describes the network testing process

[3,4]. Where training is done on a number of patterns and then the accuracy of the training is tested through the

recognition of a pattern that has not been trained but is somewhat similar to the patterns that have been trained [5].

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 2, February 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7229 166

III. THE ONE HOT VECTOR METHOD

In the neural network, the training requires data representation depending on the purpose of the training. In sequence

classification, one hot vector is often used. One hot vector can be defined as a vector with only an element entry that

corresponds to a particular letter is 1 excepting that all other inputs are zero [6,7].

Let {x
1
,x

2
 …, x

µ
} be a set of patterns and "µ" is index, the i-th element of each pattern is coded according to the

following equation [8]:-

In our papers, rather than having a vector containing one element of value (1), it is contained more than one value (1).

So that each vector contains more than one variable depending on the syntax of the sentence and the element of matrix

content from {1, -1} as illustrate in the algorithm (3).

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 2, February 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7229 167

IV. THE PROPOSED SYSTEM

The proposed system [4] will be implemented using two methods to represent the data as shown in figure (1) that

illustrate the design of the system to perform the required operations according to the following steps:

1. Preprocessing data which as illustrated in tow steps.

 Get the data from a notepad scripts.

 Select the statement that starts with a specific keyword (For, IF, While).

2. Encoding the select statement based on developing one hot vector which illustrated in the algorithm (3) if the

 experiment1, while encoding the select statement based on equation (1) if experiment2.

3. Training Hopfield network as illustrated in the algorithm (1).

4. Generate potential syntax errors for each sentence of the case study.

5. Detection & correction syntax by apply testing Hopfield neural network is illustrated in the algorithm (2).

6. Decoding phase is illustrated in the algorithm (4).

In general, the number of tokens is calculated without repeating for the entire statement. Then determine of the number

of bits that needed for encoding. That shown in figure (2).

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 2, February 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7229 168

In experiment (1), the part is the string between the two semicolons or between the arches and semicolon and the token

is the word between two spices. Each part separated into three tokens. In the last block of the first phase, each part of

the token will be converted into a sequence of {1, -1} depending on its position from the syntax and sequentially.

Where are assigns (1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,-1) to the part1 from the statement, While assigns (1,-1,-1,-1,-

1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1) to the part2 from the statement, and the part3 of the token statement it (1,-1,-1,-1,-1,-1,-

1,-1,-1,-1, 1,-1,-1,-1,-1,-1). While in experiment (2), encoding each token individually.

This process is repeated for each statement. The number of repetition is different from one sentence to another

depending on the type of keyword that used in the code sentence. At last of pre-processing phase, returns matrix (15*3)

diminution contains a sequence of {1,-1}in experiment(1) and returns matrix (5*9) in experiment(2) . These steps

illustrated in the algorithm (3).

In the third phase, the algorithm (1) training Hopfield algorithm is applied for network training. While the test Hopfield

algorithm (2) is applied and decode after generate potential syntax errors for each sentence of the case study.

V. THE DECODING DATA PHASE

The strategy of the decoding is based on the matrix that obtained from the developed test Hopfield algorithm (2) as an

input. On the other hand to perform the matching operation and decoding [9]. In particular, the decoding process

applied to each row individually. This process divides the row into (3) of sections to find the position of the token in the

temp-table as shown in figure (3) by multiplying the element value of the column that is not equal to (-1) by the value

of the row. Finally, all symbols are merge into the text variable (Whole-str) for each part.

VI. EXPERIMENT 1: IMPLEMENT HOPFIELD ALGORITHMS WITH DEVELOP ONE HOP VECTOR

In this experiment, For-statement is divided into three parts depending on the syntax of the For-statement. each part is

separated by a semicolon. Where implement the develop one hot vector algorithm (3) to encoding statement. Each part

is encoded as a row of the resulting coding matrix with (15*3) diminution contains a sequence of {1,-1}. Table (1)

shown encoding training statement (for (x=0;x<=5; x++)).

Where:

 Ex-part: indicates the example of the part statement.

 Init-part, Con- part, Iter-part: indicates initialization part, condition and,

 part, iteration part in respectively.

Table (1) the encoding matrix for each part

Name of the part Type of the Parts Ex-part the input matrix
weight matrix

diminution

Part 1 Init-part x=0 1,-1,-1,-1,-1, -1,-1,-1,-1,1, -1, 1,-1,-1,-1 (15*3)

Part 2 Con- part x<=5 1,-1,-1,-1,-1,-1,-1,-1, 1,-1, 1,-1,-1,-1,-1 (15*3)

Part 3 Iter-part x++ 1,-1,-1,-1,-1,-1,-1, 1,-1,-1,-1,-1,-1,-1,-1 (15*3)

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 2, February 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7229 169

VII. EXPERIMENT 2: IMPLEMENT HOPFIELD ALGORITHMS WITH ONE HOP VECTOR AS ONE VECTOR

In this experiment, each tokens in For-statement encodes individually. Where implement the one hot vector method to

encoding statement. Each token is encoded as a row of the resulting coding vector with one diminution contains a

sequence of {1,-1}. Table (2) shown encoding training statement (for (x=0;x<=5; x++)).

VIII. RESULTS

 To view the result of the proposed system, The case study contains (205) statements that include (90)

statements of the (For-loop statements) divided into (45) syntax error in the sequence of tokens and (45) correct

statement [10]. In particular, testing the "For keyword" syntax as the example for the proposed system.

 In experiment (1), The pre-processing token will selective the whole sentence that starts with the "For as the

keyword" successfully. Then, the implementation of the algorithm (3) development one hot vector method to produce a

matrix with (15, 3) dimensions. While algorithm (1) training Hopfield is implementation for each row to result three

weight matrix with (15, 15) dimensions. In the final phase, the test Hopfield algorithm (2) is applied and decode after

generate potential syntax errors for each sentence of the case study.

While in experiment (2) , The algorithm (4) preprocessing token will selective the whole sentence that starts with the

"For as the keyword" successfully. Then, the implementation of the algorithm (3) develop one hot vector method to

produce a one vector with (45) dimensions instead of matrix with (15, 3) dimensions. While algorithm (1) training

Hopfield is implementation for whole vector to result weight matrix with (45) dimensions.

In the final phase, the test Hopfield algorithm (2) is applied and decode after generate potential syntax errors for each

sentence of the case study.

In the experiments, there are four important factors that depend on the efficiency of their performance: the number of

the error statements that are detected, the number of correct statements that are detected, the number of error statements

that are corrected and the number of correct statements that converted to the error statement. Table (3) shows the

comparison of experiment 1 and experiment 2 and illustrated in figure (4).

Table (2)) the encoding matrix for each part

Training example the input matrix
weight matrix

diminution

for (x = 0; x<=5; x++)
1,-1,-1,-1,-1,-1,-1,-1,-1,1,-1, 1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1, 1,-1,-

1,1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1, 1,-1,-1,-1,-1,-1,-1,-1
[9]

Table (3) Comparison rate of correct recognition and failure recognition between experiments(1&2)

No. experiment No. statement
True detection

rate

Failure

detection rate

True correction

rate

Failure

correction rate

experiment 1 90 100% 0% 80% 20%

experiment 2 90 78.88 % 21.11% 53.33% 46.66%

Figure (4) Comparison of experiment 1 and experiment 2

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 7, Issue 2, February 2018

Copyright to IJARCCE DOI 10.17148/IJARCCE.2018.7229 170

IX. DISCUSSION

The importance of our research is to help the students that trying to learn Java program language by designing a

software agent capable of learning syntax. It can detect and correct syntax errors without trouble to understand the error

messages from the compiler. Our system supports the use of neural networks to contribute to the detection and

correction of error. This technique has the ability to remember knowledge from the learning stage and then address the

problem within the limits of learning information. As can be seen, in the new methods of compiler design depend on

machine learning techniques.

In the experiment (1), based on the concept of "divide and conquer" to the design of our system. The system is trained

to break the syntax based on the symbol (;) and check the arrangement sequence of symbols for each part. We

presented syntax of the statement "FOR" as an example because it consists of more than a syntax formula. In Table

(3,4,5,6), the example consists of the basic syntaxes, which can be detected and corrected by so that all the arrangement

sequence error of the tokens in the syntax are eliminated. Because of each part consists of three types of token

{Identify, Logical comparison marks, numbers}, in this experiment the reach to the stable state from the one iteration

indicates that the sentence is valid. While reaching the stable state after 2 of the iterations. This indicates that the

sentence is wrong and has been corrected.

In the experiment (2), all statement encoding as one vector to testing it. This method affects the stability of the network,

which leads to differences in the detection and correction results for the statement. The update of the value of any node

in the network affects the stability of the network as a whole and therefore the greater the length of the vector is more

likely to update the contract, leading to errors detection and correction.

X. CONCLUSION

The search is designed to correct the order of the keyword syntax sequence in the Java programming language by

processing each token separately once and processing the sentence completely again.

Our system designed with two methods of encoding, One of them breaks down the sentence into several parts and

encoding into the matrix and the other encodes the sentence as one vector.

The system is designed specifically to help the beginner programmers. Through, detection and correction syntax error

according to Hopfield technique, regarding arrangement sequence of the tokens in the program code. We used the Java

program language in building agent and as a case study. Because of, It is one of important language and most popular

that deals based on object-oriented, class-based. The much of its syntax derives from C, C++ language. Ultimately, the

beginner programmers in Java program language understand how to correct the some of the syntax error. Without

wasting time to understanding the error messages of the compiler.

REFERENCES

[1] P. Denny, A. Luxton-Reilly, and E. Tempero, “All syntax errors are not equal,” Proc. 17th ACM Annu. Conf. Innov. Technol. Comput. Sci.
Educ., p. 75, 2012.

[2] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and Correcting Java Programming Errors for Introductory Computer Science

Students,” ACM SIGCSE Bull., vol. 35, no. 1, pp. 153–156, 2003.
[3] A. H. N. Network, “A Modified Hopfield Neural Network for Solving TSP Problem,” pp. 1775–1780, 2016.

[4] M. Negnevitsky, Artificial Intelligence AGuide to Intelligent Systems, Second Edi. England: Pearson Education Limited, 2010.

[5] Dr. Buthainah F. AL-Dulaimi, Hameed Taha Khaleel " A Hopfield Neural Network Based Building Agent for Detection and Correction of
Programming Errors", International Journal of Science and Research (IJSR), Volume 6 Issue 7, July 2017.

[6] Y. Goldberg, “A Primer on Neural Network Models for Natural Language Processing,” arXiv.org, vol. cs.CL, p. 726, 2015.

[7] X. Hinaut, X. Hinaut, R. Neural, and S. Learning, “Recurrent Neural Network for Syntax Learning with Flexible Representations To cite this
version : Recurrent Neural Network for Syntax Learning with Flexible Representations,” IEEE ICDL-EPIROB Work. Lang. Learn., 2016.

[8] A. V. Uriarte-Arcia, I. López-Yáñez, and C. Yáñez-Márquez, “One-hot vector hybrid associative classifier for medical data classification,” PLoS

One, vol. 9, no. 4, 2014.

[9] C. Hillar, J. Sohl-Dickstein, and K. Koepsell, “Efficient and optimal binary Hopfield associative memory storage using minimum probability

flow,” arXiv Prepr. arXiv1204.2916, vol. 441170, no. 1, p. 5, 2012.

[10] R. Sedgewick, K. Wayne, J. Holcomb, C. Melville, and G. Entremont, Introduction to Programming in Java An Interdisciplinary Approach.
Greg Tobin, 2007.

